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The subject of q-calculus is a rich source of  learning 
activities that address concept formation, exploration, 
variation, rich training and proof.  This paper is a survey 
of the subject that shows how high school students using a 
computer algebra system can explore the field and prove 
some results.  

 
1 INTRODUCTION 

 
The impressive subject of calculus has a well 

known sister called q-calculus. It is best explored using a 
computer algebra system (CAS) to carry out the necessary 
calculations. In the course of  learning this new subject one 
is automatically led to rethink the standard approach of 
calculus as well.  

 
A mathematics teacher can achieve different goals 

using q-calculus.  In the first part of the paper we show 
that the q-approach leads to an alternative definition of the 
derivative of a real valued function.  This approach offers 
many problems that can be assigned to students to exercise 
limit based proof techniques. 

 
In the second part we discard the limit process 

completely.  The resulting expressions contain a free 
variable q that gives the subject its name.   

 
The motivation to include this topic in a course on 

calculus comes not only from the subject itself but also 
from the educational processes it enables.  The subject 
encourages exploration.  As the theory runs parallel to 
standard calculus students can easily state conjectures and 
try to prove them.  The new definitions are slight 
variations of the old definitions and further variations can 
be invented and their properties can be studied.    

 
2 THE DERIVATIVE REVISITED 

 
 The standard approach of calculus leads to the 
definition of the derivative of a function as  
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The fraction in this formula is interpreted as the 

slope of the secant and its limit defines the slope of the 
tangent.  Usually, one introduces a variable h  for the 

difference xxh −= 2  to emphasise the quantity that tends to 
zero in the limit:  
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Of course, there is nothing wrong with this approach and 

the subsequent derivation of the various rules of calculus.  
From a teacher's perspective there is however the shortcoming 
that there is little opportunity for exercises on proving 
derivation rules.  It seems hardly possible to invent any 
tractable assignments other than reproducing known proofs.  
Producing exercises of various degrees of difficulty requires 
variations of known situations, and precisely such a variation 
comes with the q approach. 

 
It is not necessary to think of the difference between 2x  

and x  as an arithmetical difference.  We may consider 2x to be 
the q-fold of x , i.e. we may introduce a factor that relates these 
two variables: qxx =2 .  The limit in which the secant becomes 
the tangent is then given as q  approaches one:  
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As with the standard derivation students should take 

some time to experiment with numerical examples to gain a 
feeling for the new situation. 

 
2.1 RULES OF DIFFERENTIATION 

 
 This alternative definition would not be of great 
interest if it wasn't possible to derive many rules of calculus.  
Let’s see how the use of a computer algebra system, such as 
MuPAD (www.mupad.com), can shed light on what is going 
on. Figure 1 shows some examples where this approach is used 
to obtain some derivatives. 
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qDIF:= (f,x) ->  limit((subs(f,x=q*x)-f)/(q*x-x),q=1) 
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qDIF(x^2,x),qDIF(x^3,x),qDIF(x^4,x) 
 

  32 4,3,2 xxx ⋅⋅⋅  
 
qDIF(1/x,x) 
 

  
2

1
x

−  

Figure 1  q-calculus applied to powers of x. 
 

The new definition works as expected, but how can we gain more insight?  We will remove the limit command and have a look 
at the quotients, see Figure 2. 
 
Dq:= (f,x) -> (subs(f,x=q*x)-f)/(q*x-x) 
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[i,factor(Dq(x^i,x))]$i=1..5 
 

  [ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ]1,5,1,4,1,3,1,2,1,1 4324322 ++++⋅+⋅++⋅+⋅ qqqqxqxqqxqx  
 

Figure 2  The quotients involved in the above q-calculus 
 
 This suggests that the denominators cancel out 
completely.  This fact can be shown in general. Consider 
( ) xxf ′′=  with a natural number as exponent.  Then  
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The last number can be reduced using the identity  
 

( ) ( )1....11 21 ++++⋅−=− −− qqqqq nnn . 
 
Hence the whole fraction reduces to  
 

1...21 ++++ −− qqq nn  
 
which clearly approaches n  as 1→q .  For fractional 

exponents as in ( ) nxxf
1

=  almost the same reasoning 
applies: 
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Here we applied the substitution nqt
1

= .  Now, the same line 
of argument as before shows  
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 The interplay of CAS exploration and rigorous proof can 
be repeated for several other types of functions.  For logarithms 
a bit of work with MuPAD  reveals a simple form of the 
quotient: 
 

assume(q>0): factor(simplify(Dq(ln(x),x))) 
  
In mathematical language: 
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This limit is easily determined using the CAS.  
 
Trigonometric functions are also within the reach of 
MuPAD, as shown in Figure 3. 
 
qDIF(sin(x),x) 
 
  ( )xcos  
 

Figure 3  Differentiation of a trigonometric function 
 

However, it is difficult to evaluate this limit using paper 
and pencil methods.  Sum, product and quotient rules are 
derived in strictly analogous ways to the standard case. 
However, the somewhat different setup should make 
students think about every step rather than reproduce them 
from memory.   
 
An interesting point is that the derivative of the absolute 
value function is rather straightforward in q-calculus as is 
shown below: 
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Taking a minute of thought reveals that at 0=x  all of the 
above calculations have to be reconsidered.  This shows 
the merits of the standard derivation very clearly.  
 
3 FAREWELL TO THE LIMIT  
 

During the above approach to the derivative we 
were led to define the analogue of the finite difference 
quotient, Dq in the MuPAD scripts.  Now, we will take 
this quotient as our basic object of interest, i.e. we do not 
perform the limit.  This is not too strange a thing to do if 
you recall that many results of calculus are applied at the 
end in numerical algorithms in which the derivative is 
again discretised.  So, why not see how far one can get 
without performing limits at all? 

 
In this spirit we define the q-differential of a function as 
 

( ) ( ) ( ),: xfqxfxfd q −=  
which leads to  

( ) .1: xqxqxxd q −=−=  
 

Combining, we arrive at the q-derivative we have met 
before: 
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The q-derivative of the power functions are  
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This motivates us to define the n-th q-number to be  
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Then the powers q-differentiate almost as usual: 
 

[ ] 1−⋅= n
q

n
q xnxD . 

 
4 q-NUMBERS 
 

This definition calls for CAS explorations. The 
factorised forms of the first n q-numbers suggest that q-
numbers have the same primes as standard numbers. Figure 4 
shows the first 8 factorised q-numbers. 
 
factor(qN(n))$n=1..8 
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Figure 4  The first 8 factorised q-numbers 

 
 In certain formulas the version of the q-numbers used so 
far produces ugly results.  Using a square root p of 2pq = some 
results become more elegant when stated in terms of the "p-
numbers":  
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 A warning note for the reader who consults the 
literature:  this bracket notation is common in the field of 
quantum groups but bears the risk of confusion with the 
Pochhammer symbols.  
 
 For example, one can use the CAS to show that 

 
( ) ( ) ( )p

m
p

n
p npmpnm −+=+  

( ) ( )
( ) ( )p

p

pp n
nn

=
−++

2

11
 

 
 With these as examples the students can go on and 
discover and prove more identities using the CAS.  Further 
common definitions involve the q-factorial [ ] [ ] [ ]ppnn 1....! =  
and q-binomial coefficients built from these with the usual 
definition.  They open up even more possibilities for CAS 
based discoveries.  
 
 However, the most important applications are in the 
field of noncommutative algebras. If two elements yx, of such 
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an algebra satisfy the relation yxqxy ⋅⋅=⋅ , one can apply 
the q-binomial theorem 
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 Although these noncommutative algebras are not 
difficult to handle they are far from typical of the subjects 
of the usual high school curriculum.   
 
5 MORE ON Q-DIFFERENTIATION 
 
 The q-derivative obeys the usual rule for the sum of 
two functions: 
 

( ) ( ) ( )gDfDgfD qqq +=+  
 
 But what about the product rule?  The calculation 
shown in Figure 5 proves the correct generalisation of the 
product rule: 
 
A:=Dq(f(x)*g(x),x) 
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B:=Dq(f(x),x)*g(x)+f(q*x)*Dq(g(x),x) 
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simplify(A-B) 
 
 0  
 

Figure 5  Proving the product rule 
 
Thus the product rule is 
 

( ) ( )( ) ( )( ) ( ) ( ) ( )( )xgDqxfxgxfDxgxfD qqq ⋅+⋅=⋅  
 
 It seems that there is no easy generalisation of the 
chain rule.  Of course, in q-mathematics there is not an 
exponential function but a q-exp function, with the 
following series definition:   
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(This is a special case of what is called a q-hypergeometric 
series – a topic ideally suited for CAS, see Koepf (1998)).  
 
 It follows that ( )( ) ( ),expexp xxD qqq = , which is far 
easier to prove by hand than with CAS and provides a 
good opportunity to reflect on the choice of the appropriate 
technique.  Note however, that the result  

( ) ( ) ( )yxyx qqq expexpexp ⋅=+  only holds if 
yxqxy ⋅⋅=⋅ . 

6 q-INTEGRATION 
 
 In the teaching of integration theory computer algebra 
offers many possibilities, e.g. Ben-Israel and Koepf (1994).  
(Here, it is one more example of concept formation and 
exploration.)   
 
 The inverse operation of q-differentiation shall be called 
q-integration (q-antiderivative would be more precise). 
 
 From  

( )( ) ( )xfxFDq =  
it follows that  
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 Following Klimyk and Schmüdgen (1997), we substitute 

xq i for x and multiply by –1: 
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 Summing these equations for  1,...,0 −= ni gives: 
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 Klimyk and Schmüdgen impose the restriction that 

10 << q  and assume F   to be continuous at 0.  Then the limit 
as  ∞→n  can be performed to yield an expression that can be 
turned into the definition of the q-Integral: 
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 This integral is in fact a Riemannian sum with the 
interval points ..cq i   We now define a MuPAD function for q-
integration and check in a special case that the integral is in fact 
an antiderivative. This is illustrated in Figure 6. 
 
assume(q<1): assume(q>0,_and): 
qInt:= (f,x,c)->c*(1-q)*sum(q^i*subs(f,x=q^i*c),i=0..infinity);  
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simplify(qInt(x^2,x,a)) 
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simplify(Dq(qInt(x^2,x,a),a)) 
 

 2a  
 

Figure 6  An example of q-integration 
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 Finally, we perform the limit 1→q  and rediscover 
the classical integral, as shown in Figure 7. 
 
f:=x: qI:=simplify(qInt(f,x,a)); limit(qI,q=1); int(f,x=0..a) 
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map([x,x^2,sqrt(x)], f→limit(simplify(qInt(f,x,a)),q=1)) 
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Figure 7  Classical integrals 

 
 With this we are led back to our starting point. Now 
we have a new limit approach to the classical 
antiderivative as well.  
 
7 CONCLUSION 
 
 Computer algebra is well suited for supporting 
explorations and many (although not all) proofs in this 
area.  While the subject is still evolving, in various 
branches there is already a rich body of knowledge as 
documented in the literature.  We have concentrated on 
those parts that are within the reach of high school 
education.  As the q-theory runs largely parallel to the 
standard theory students can carry over many ideas and 
create hypotheses and proofs.  This style of working 
reflects very well the way mathematics is done at 
university.  Many students think that mathematical 
research gives birth to complex new theories from scratch.  
However, in reality much more research work is conducted 
in a way that seeks to generalise and extend established 
theory.  Hence, this subject lets students work almost like 
research mathematicians.  
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